Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses.
نویسندگان
چکیده
The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the T(d) and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the T(d) and signal intensity, and it decreased the variability of the signal. Although T(d)s of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower T(d)s than those with mismatches in the first or second position. The trained NNs predicted the T(d) with high accuracies (R(2) = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R(2) = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in T(d)s, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5' terminus plays a greater role in determining the T(d) and signal intensity of duplexes than the type of mismatch.
منابع مشابه
Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays.
The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybri...
متن کاملHybridization to surface-bound oligonucleotide probes: Influence of point defects
Microarray-based genotyping is based on the high discrimination capability of oligonucleotide probes. For detection of Single Nucleotide Polymorphisms (SNPs) single-base discrimination is required.We investigate how various point-mutations, comprising single base mismatches (MMs), insertions and deletions, affect hybridization of DNA-DNA oligonucleotide duplexes. Employing light-directed in sit...
متن کاملTests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted
Hybridization of rRNAs to microarrays is a promising approach for prokaryotic and eukaryotic species identification. Typically, the amount of bound target is measured by fluorescent intensity and it is assumed that the signal intensity is directly related to the target concentration. Using thirteen different eukaryotic LSU rRNA target sequences and 7693 short perfect match oligonucleotide probe...
متن کاملImpact of point-mutations on the hybridization affinity of surface-bound DNA/DNA and RNA/DNA oligonucleotide-duplexes: Comparison of single base mismatches and base bulges
BACKGROUND The high binding specificity of short 10 to 30 mer oligonucleotide probes enables single base mismatch (MM) discrimination and thus provides the basis for genotyping and resequencing microarray applications. Recent experiments indicate that the underlying principles governing DNA microarray hybridization - and in particular MM discrimination - are not completely understood. Microarra...
متن کاملImproving the fidelity of Thermus thermophilus DNA ligase.
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2002